Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 5867-5873, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35349265

RESUMO

Reproducibility of the experimental results and object of study itself is one of the basic principles in science. But what if the object characterized by technologically important properties is natural and cannot be artificially reproduced one-to-one in the laboratory? The situation becomes even more complicated when we are interested in exploring stochastic properties of a natural system and only a limited set of noisy experimental data is available. In this paper we address these problems by exploring diffusive motion of some natural clays, halloysite and sepiolite, in a liquid environment. By using a combination of dark-field microscopy and machine learning algorithms, a quantitative theoretical characterization of the nanotubes' rotational diffusive dynamics is performed. Scanning the experimental video with the gradient boosting tree method, we can trace time dependence of the diffusion coefficient and probe different regimes of nonequilibrium rotational dynamics that are due to contacts with surfaces and other experimental imperfections. The method we propose is of general nature and can be applied to explore diffusive dynamics of various biological systems in real time.


Assuntos
Algoritmos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Difusão , Movimento (Física)
2.
J Phys Condens Matter ; 33(16)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33724237

RESUMO

The magnets are typically classified into Stoner and Heisenberg type, depending on the itinerant or localized nature of the constituent magnetic moments. In this work, we investigate theoretically the behaviour of the magnetic moments of iron and cobalt in their B2-ordered alloy. The results based on local spin density approximation for the density functional theory (DFT) suggest that the Co magnetic moment strongly depends on the directions of the surrounding magnetic moments, which usually indicates the Stoner-type mechanism of magnetism. This is consistent with the disordered local moment picture of the paramagnetic state, where the magnetic moment of cobalt gets substantially suppressed. We argue that this is due to the lack of strong on-site electron correlations, which we take into account by employing a combination of DFT and dynamical mean-field theory (DMFT). Within LDA + DMFT, we find a substantial quasiparticle mass renormalization and a non Fermi-liquid behaviour of Fe-3dorbitals. The resulting spectral functions are in very good agreement with measured spin-resolved photoemission spectra. Our results suggest that local correlations play an essential role in stabilizing a robust local moment on Co in the absence of magnetic order at high temperatures.

3.
Proc Natl Acad Sci U S A ; 117(48): 30241-30251, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208537

RESUMO

Complexity of patterns is key information for human brain to differ objects of about the same size and shape. Like other innate human senses, the complexity perception cannot be easily quantified. We propose a transparent and universal machine method for estimating structural (effective) complexity of two-dimensional and three-dimensional patterns that can be straightforwardly generalized onto other classes of objects. It is based on multistep renormalization of the pattern of interest and computing the overlap between neighboring renormalized layers. This way, we can define a single number characterizing the structural complexity of an object. We apply this definition to quantify complexity of various magnetic patterns and demonstrate that not only does it reflect the intuitive feeling of what is "complex" and what is "simple" but also, can be used to accurately detect different phase transitions and gain information about dynamics of nonequilibrium systems. When employed for that, the proposed scheme is much simpler and numerically cheaper than the standard methods based on computing correlation functions or using machine learning techniques.

4.
Phys Chem Chem Phys ; 21(40): 22647-22653, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31593196

RESUMO

First principles calculations of the magnetic and electronic properties of VSe2 describing the transition between two structural phases (H,T) were performed. The results of the calculations evidence a rather low energy barrier (0.60 eV for the monolayer) for the transition between the phases. The energy required for the deviation of a Se atom or whole layer of selenium atoms by a small angle of up to 10° from their initial positions is also rather low, 0.32 and 0.19 eV/Se, respectively. The changes in the band structure of VSe2 caused by these motions of Se atoms should be taken into account for analysis of the experimental data. Simulations of the strain effects suggest that the experimentally observed T phase of the VSe2 monolayer is the ground state due to substrate-induced strain. Calculations of the difference in the total energies of the ferromagnetic and antiferromagnetic configurations evidence that the ferromagnetic configuration is the ground state of the system for all stable and intermediate atomic structures. Calculated phonon dispersions suggest a visible influence of the magnetic configurations on the vibrational properties.

5.
Sci Rep ; 8(1): 2379, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402893

RESUMO

Synthesis, thermodynamic properties, and microscopic magnetic model of ilinskite-type KCu5O2(SeO3)2Cl3 built by corner-sharing Cu4 tetrahedra are reported, and relevant magnetostructural correlations are discussed. Quasi-one-dimensional magnetic behavior with the short-range order around 50 K is rationalized in terms of weakly coupled spin ladders (tubes) having a complex topology formed upon fragmentation of the tetrahedral network. This fragmentation is rooted in the non-trivial effect of the SeO3 groups that render the Cu-O-Cu superexchange strongly ferromagnetic even at bridging angles exceeding 110°.

6.
Phys Chem Chem Phys ; 20(8): 5841-5849, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29412207

RESUMO

We report large-scale and long-time molecular dynamics simulations demonstrating the transformation of a single kaolin alumosilicate sheet to a halloysite nanotube. The models we consider contain up to 5 × 105 atoms, which is two orders of magnitude larger than that used in previous theoretical works. It was found that the temperature plays a crucial role in the formation of the rolled geometry of the halloysite. For the models with periodic boundary conditions, we observe the tendency to form twin-tube structures, which is confirmed experimentally by atomic force microscopy imaging. The molecular dynamics calculations show that the rate of the rolling process is very sensitive to the choice of the winding axis and varies from 5 ns to 25 ns. The effects of the open boundary conditions and the initial form of the kaolin alumosilicate sheet are discussed. Our simulation results are consistent with experimental TEM and AFM halloysite tube imaging.

7.
Phys Rev Lett ; 112(10): 107202, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679324

RESUMO

Han purple (BaCuSi2O6) is not only an ancient pigment, but also a valuable model material for studying Bose-Einstein condensation of magnons in high magnetic fields. Using precise low-temperature structural data and extensive density-functional calculations, we elucidate magnetic couplings in this compound. The resulting magnetic model comprises two types of nonequivalent spin dimers, in excellent agreement with the Cu63,65 nuclear magnetic resonance data. We further argue that leading interdimer couplings connect the upper site of one dimer to the bottom site of the contiguous dimer, and not the upper-to-upper and bottom-to-bottom sites, as assumed previously. This finding is verified by inelastic neutron scattering data and implies the lack of frustration between the layers of spin dimers in BaCuSi2O6, thus challenging existing theories of the two-dimensional-like Bose-Einstein condensation of magnons in this compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...